1,498 research outputs found

    Probing the effects of a thermonuclear X-ray burst on the neutron star accretion flow with NuSTAR

    Get PDF
    Observational evidence has been accumulating that thermonuclear X-ray bursts ignited on the surface of neutron stars influence the surrounding accretion flow. Here, we exploit the excellent sensitivity of NuSTAR up to 79 keV to analyze the impact of an X-ray burst on the accretion emission of the neutron star LMXB 4U 1608-52. The ~200 s long X-ray burst occurred during a hard X-ray spectral state, and had a peak intensity of ~30-50 per cent of the Eddington limit with no signs of photospheric radius expansion. Spectral analysis suggests that the accretion emission was enhanced up to a factor of ~5 during the X-ray burst. We also applied a linear unsupervised decomposition method, namely non-negative matrix factorization (NMF), to study this X-ray burst. We find that the NMF performs well in characterizing the evolution of the burst emission and is a promising technique to study changes in the underlying accretion emission in more detail than is possible through conventional spectral fitting. For the burst of 4U 1608-52, the NMF suggests a possible softening of the accretion spectrum during the X-ray burst, which could potentially be ascribed to cooling of a corona. Finally, we report a small (~3 per cent) but significant rise in the accretion emission ~0.5 h before the X-ray burst, although it is unclear whether this was related to the X-ray burst ignition.Comment: 10 pages, 10 figures, 1 table, to appear in MNRA

    Purification of Mixed State with Closed Timelike Curve is not Possible

    Full text link
    In ordinary quantum theory any mixed state can be purified in an enlarged Hilbert space by bringing an ancillary system. The purified state does not depend on the state of any extraneous system with which the mixed state is going to interact and on the physical interaction. Here, we prove that it is not possible to purify a mixed state that traverses a closed time like curve (CTC) and allowed to interact in a consistent way with a causality-respecting (CR) quantum system in the same manner. Thus, in general for arbitrary interactions between CR and CTC systems there is no universal 'Church of the larger Hilbert space' for mixed states with CTC. This shows that in quantum theory with CTCs there can exist 'proper' and 'improper' mixtures.Comment: Latex2e, No Figs, 4 + pages, An error corrected, Results unchange

    Self Replication and Signalling

    Full text link
    It is known that if one could clone an arbitrary quantum state one could send signal faster than the speed of light. However it remains interesting to see that if one can perfectly self replicate an arbitrary quantum state, does it violate the no signalling principle? Here we see that perfect self replication would also lead to superluminal signalling.Comment: Modified version of quant-ph/0510221, Accepted in International Journal of Theoretical Physic

    SINGLE QUBIT, TWO QUBIT GATES AND NO SIGNALLING PRINCIPLE

    Get PDF
    In this work we investigate whether one can construct single and two qubit gates for arbitrary quantum states from the principle of no signalling. We considered the problem for Pauli gates, Hadamard gate, C-Not gate

    Inseparability of Quantum Parameters

    Full text link
    In this work, we show that 'splitting of quantum information' [6] is an impossible task from three different but consistent principles of unitarity of Quantum Mechanics, no-signalling condition and non increase of entanglement under Local Operation and Classical Communication.Comment: 9 pages, Presented in Quantum Computing Back Action in IIT Kanpur (2006). Accepted in International Journal of Theoretical Physic

    Quantum Dissension: Generalizing Quantum Discord for Three-Qubit States

    Full text link
    We introduce the notion of quantum dissension for a three-qubit system as a measure of quantum correlations. We use three equivalent expressions of three-variable mutual information. Their differences can be zero classically but not so in quantum domain. It generalizes the notion of quantum discord to a multipartite system. There can be multiple definitions of the dissension depending on the nature of projective measurements done on the subsystems. As an illustration, we explore the consequences of these multiple definitions and compare them for three-qubit pure and mixed GHZ and W states. We find that unlike discord, dissension can be negative. This is because measurement on a subsystem may enhance the correlations in the rest of the system. This approach can pave a way to generalize the notion of quantum correlations in the multiparticle setting.Comment: 9 pages 6 figures typo fixed and some arguments adde

    Infrared Spectroscopy of GX 1+4/V2116 Oph: Evidence for a Fast Red Giant Wind?

    Get PDF
    We present infrared spectroscopy of the low-mass X-ray binary GX 1+4/V2116 Oph. This symbiotic binary consists of a 2-min accretion-powered pulsar and an M5 III red giant. A strong He I 1.083 micron emission line with a pronounced P Cygni profile was observed. From the blue edge of this feature, we infer an outflow velocity of 250(50) km/s. This is an order of magnitude faster than a typical red giant wind, and we suggest that radiation from the accretion disk or the neutron star may contribute to the acceleration of the outflow. We infer a wind mass loss rate of around 10^-6 Msun/yr. Accretion from such a strong stellar wind provides a plausible alternative to Roche lobe overflow for supplying the accretion disk which powers the X-ray source. The H I Paschen beta and He I 1.083 micron lines showed no evidence for the dramatic changes previously reported in some optical lines, and no evidence for pulsations at the 2-min pulsar period.Comment: 11 pages including 2 PS figures. To appear in ApJ Letter

    Millihertz Quasi-periodic Optical Oscillations in 4U 0614+091

    Get PDF
    We report the discovery of a 1mHz optical quasi-periodic oscillation (QPO) in the candidate ultracompact low-mass X-ray binary 4U 0614+091. The ultra-low frequency QPO has no X-ray counterpart in contemporaneous RXTE/PCA data and is likely a signature of structure in the accretion disk. The QPO can be reasonably fitted with a single sine wave but with a phase jump part way through the observation, indicating that it is not coherent.We also identify a 48 min modulation, approximately consistent with the suggested orbital period of O'Brien (2005) and Shahbaz et al. (2008). If this is indeed orbital, it supports an identification of 4U 0614+091 as an ultra-compact source.Comment: 7 pages, 5 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ
    • …
    corecore